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1.  Overview of First Time Authentication for Airborne Networks 
 
Mobile airborne networks deployed and used by the armed forces face significant 
challenges in balancing security concerns with reliably servicing the needs of the forces 
dependent on it.  These issues are complicated by the ever-changing collaborative 
environments that these networks are tasked to support.  In this program, we address one 
of the most significant challenges inherent in these networks: how do you enable valid 
new users or hardware to securely interact with a network at the appropriate access level, 
where the network and user are both unknown to each other?  
 
There are several major hurdles to overcome when tackling this issue.  First, shifts in the 
makeup of allied forces over time may mean that large numbers of known users may lose 
access or new users gain access privilege in short periods of time.  Second, different 
portions of different networks are often operated by separate factions, and users are 
appropriately reticent to send credential information through some of these networks.  
This is particularly true in MANETs (Mobile Adhoc Network) that may be self-
organizing, because of the risk that this credential information may become 
compromised, and inappropriately utilized at a future date through replay or man-in-the-
middle attacks.  For example, consider a military operation scenario where a soldier with 
time critical targeting information must quickly connect to an Adhoc coalition network to 
impart necessary information, but has never accessed that network before.  The 
information must be quickly and reliably passed, while maintaining anonymity and 
security from unknown entities that may be monitoring transmissions. 
 
Essentially, the fundamental issues from both the user and network perspective boil down 
to the same thing: credential and key management systems. Whether they are meant to 
assure networks of a user’s privileges or a user of the network’s validity, current 
credential and key management systems are designed for long-term use on the order of 
hours or days.  In a collaborative airborne networking environment the fundamental 
nature of the mission encourages frequent user and hardware turnover on the order of 
minutes or seconds. 
 
In the First Time Authentication for Airborne Networks (FAAN) program we investigate 
the use of the Zero Knowledge Protocol (ZKP) to authenticate and secure communication 
in a manner compatible with the requirements of an Airborne network. 
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2.  Zero Knowledge Protocol Algorithms 
 
The Zero Knowledge Protocol (ZKP) is a powerful technique that replaces the portion of 
a traditional credential-based key management system where credentials are exchanged.  
Instead, in ZKPs a proof of the existence of the credential is sent, allowing the receiver to 
develop absolute confidence that the user has a valid credential, without exposing the 
credential to risk of compromise.  The proof consists of a series of challenge-response 
exchanges, and even the capture of all previous challenge-response interchanges does not 
allow the re-creation of the credential, in the same way that the capture of encrypted 
traffic does not allow the cracking of an encryption key.  In addition, the mathematics of 
the protocol guarantees that no information other than the existence of a valid certificate 
is contained in the response.  Thus, unlike with a standard scheme where repeat users can 
be identified or tracked using their unique certificate, such information can only be 
gleaned from the exchange if explicitly included by the user.  This property can be 
valuable for certain personnel for which identity, time, location, and content of 
transmittals are extremely sensitive and leakage of such information could pose serious 
risk to themselves and their mission. 
 
In an open environment, the exchanges of authentication protocols are susceptible to 
eavesdropping; it is important to formalize notions of security to gauge the strength of 
these protocols.  ZKP is no exception. Methods such as Direct Anonymous Attestation 
[34, 35] provide properties such as anonymity, secrecy, strong secrecy, and authenticity 
that are desirable for any protocols to be secure; these properties are embedded in ZKP 
by design. 
 
Anonymity and secrecy go hand in hand in ZKP; briefly, anonymity is when the server 
cannot tell who it is authenticating, and secrecy is when the user does not reveal his 
secret credential to the server.  All users, including the adversary, may start the protocol 
with the server; anonymity is guaranteed because an adversary cannot tell from the 
protocol outputs which users are authenticated by the server.  Also, an authenticated user 
never reveals his secret (therefore his identity) during ZKP exchanges, the server is able 
to establish the legitimacy of the user, but cannot tell the legitimate users apart. 
Furthermore, since the outputs from the user contain only the derived information of his 
secret key, his secrecy remains hidden. 
 
Strong secrecy is when the adversary cannot tell when the value of the secret changes.  
Since the user never reveals his secret in any of its exchanges with the server, the 
adversary cannot tell from the outputs alone that the user has changed his secret.  
Authenticity is when the server is able to verify with some certainty that the user has the 
appropriate credentials; as we will illustrate in the following sections, when a user passes 
all the server’s challenges, the probability that the user is an imposter becomes 
exponentially small, therefore authenticity is maintained in the ZKP. 
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2.1  ZKP Overview 
 
In most authentication schemes, the identities of the users who wish to gain access to 
resources are associated with a secret identification, such as a password or certificate, 
known only by the users and the authority. The traditional approach is for the user to 
reveal their secret to the authority to prove their identity.  There are several problems 
with this approach.  First, the authority may not be who he claims to be, that is, a 
malicious third party could pose as the authority.   In this case by revealing his secret 
password to the imposter the user compromises the system of trust, and the system can no 
longer guarantee that those who are able to gain access are legitimate users.  Furthermore, 
even if the authority is trustworthy, revealing a password is susceptible to eavesdropping, 
compromising the system. 
 
The use of zero-knowledge protocols, on the other hand, effectively removes these 
problems.  It is usually assumed that in any zero-knowledge protocol the users have in 
their possession secrets that are known only to themselves.  Furthermore, the secrets will 
generally be very hard to deduce via computation and therefore will not be susceptible to 
guessing by a malicious third party.  Also, zero-knowledge protocols are designed such 
that no information is leaked about the secrets that the users possess during the 
authentication process, so that a malicious user would gain nothing out of eavesdropping. 
 
A subtlety exists when a zero-knowledge protocol is being implemented.  In particular, 
one must make a distinction between a scheme that maintains identification and 
anonymity.  An identification scheme associates each user with a secret key, which is 
kept private; the server keeps the corresponding public keys, which are used upon 
authentication requests to validate the legitimacy of the users.  However, the identity of 
the user is revealed once the authentication succeeds.  Since the user must include his 
public key in his correspondence with the server, if the public/private keys are distinct 
then the user’s activities can be followed by a malicious entity.  A scheme that guarantees 
anonymity, on the other hand, reveals nothing about the user, even after successful 
authentication.  A scheme with weak anonymity is one that assigns users with the same 
identification and secret information, so that all valid users look alike to any observer of 
the system.  A scheme with strong anonymity assigns every user a unique identifier, yet 
the users remain indistinguishable to eavesdroppers and other users in the system.  The 
generic ZKP only provides weak anonymity.  We will discuss in section 4 methods that 
can be used to overcome this, as it inherently prevents the simultaneous support of 
anonymity and privilege revocation. 
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The general flow of zero knowledge protocols is described below.  The user who wishes 
to prove his identity to the authority is known as the prover, and the authority is known as 
the verifier.  The prover generally has a secret that is generated by combining a unique 
piece of information originally assigned when access is first granted, with a public piece 
of information that may be periodically published.  At the beginning of each zero 
knowledge proof round, the prover publishes his public keys.  The typical pattern of 
exchanges between the prover and the verifier, repeated over several rounds, is: 
 

1) The prover (P) sends the verifier a value that is computed based on his private 
key. 

2) The verifier flips a coin, and asks the prover to answer one of two questions based 
on the result of the coin flip.  Generally the questions are either to answer a 
question about the value that was sent in step 1, or to answer a question about the 
secret key. 

3) The prover sends the verifier the answer to his question. 
4) The verifier checks that the answer is correct. 
 

 Prover Verifier 

ZKP Rounds 

Public keys

Protocol Initiation

Challenge

Response

Verification
 

 
Figure 1:  Typical ZKP Exchanges 

 
 
Note that in the scenario the prover’s private key is never revealed. The verifier gains 
more confidence in the user’s authenticity as the number of rounds increase.  In 
particular, suppose that a malicious prover M tries to masquerade as a legitimate user 
without knowing that user’s private key.   
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Since the verifier V has no knowledge of the challenge question he’s going to send until 
the coin flip in step 2, then since M doesn’t have the prover’s secret key M only has a 
50% chance of getting the answer correct in step 3 assuming that the secret is sufficiently 
difficult to guess.  This is a good assumption in the initial challenge-response exchange, 
but if the malicious prover M has been eavesdropping on a number of interchanges 
between legitimate users, that assumption may become invalid.  A good ZKP protocol 
minimizes the risk of this by making intelligent secret guessing extremely difficult even 
if the malicious users collects significant data on valid exchanges in the same way 
encryption makes key guessing extremely difficult despite numerous exchange captures. 
 
Assuming the malicious prover is unable to make an intelligent guess regarding a valid 
user’s secret, over a k-round exchange between the prover and the verifier, the probability 
that M successfully cheats on all k rounds is (½)k. For even a moderate value of k the 
probability to cheat successfully is exceptionally small. 
 
Although all zero-knowledge protocols share the characteristics outlined above, each 
protocol can be categorized according to the problems that are considered 
computationally hard to solve.  Each category of protocols comes with different intrinsic 
properties.  In particular, we are interested in the scalability in terms of bandwidth 
utilization, number of exchanges, and calculation requirements for these protocols while 
maintaining strong security properties in an airborne networking environment.  
 
 
2.2  General survey of ZKP Algorithms 
 
The Zero Knowledge Protocol uses a computationally hard problem as the basis of its 
security so that without the user’s secret it becomes difficult for an adversary to calculate 
a probable answer to any given question posed by the server during the challenge-
response exchange, even if the adversary has been eavesdropping on all previous 
exchanges.  In the past 20 years many different hard problems have been utilized.  One 
common category of problems used are NP-Complete problems, since their 
computational time complexity is known to be extreme enough to foil any adversary for 
some subset of the possible questions (the worst case scenarios that define the time 
complexity).  The conclusion that any NP problem can be the basis for a zero-knowledge 
proof is established in [2].   The Graph Three-Colorability problem is one such NP-
Complete problem that has been explored for use in zero-knowledge proofs [1]. 
 



6 
 

There are also non-NP problems that may be hard enough for the average case to be 
considered for use in ZKP.  In some cases, they may even be superior.  The key issue is 
that while NP is a description of the difficulty of answering the hardest question, it is not 
a description of the difficulty of answering the average question.  For many NP problems 
there exists heuristics to help generate answers in polynomial time for a large subset of 
the possible questions.  The utilization of such NP problems is not out of the question, but 
to do so a mechanism must be designed to generate a subset of the NP problem for which 
the average case has a high time complexity due to the ineffectiveness of heuristic 
solutions.  Such mechanisms are not always easy, and in some cases problems that have 
not proven to be in either NP or P may have better average case problem characteristics 
making them more appropriate for use in a zero-knowledge protocol. 
 
In [3] it is noted that when the zero knowledge requirement is relaxed to Statistical Zero 
Knowledge (instead of Perfect Zero Knowledge), a whole class of problems not in NP 
can be used to construct ZKP.  These include Graph Non Isomorphism, and Permutation 
Group Non Isomorphism.  Other problems include Quadratic Residuosity, Discrete 
Logarithm, as well as the Shortest Vector and Closest Vector problems in lattices. 
 
Lattice-based Zero-Knowledge Proofs have been a popular research topic in the last 
decade.  Two example problems that are lattice based are the Shortest Vector Problem 
(SVP) and Closest Vector Problem (CVP).  Lattice problems rely on the hardness of 
finding approximate solutions to the given problem.  Goldreich et. al. [4] presented some 
results for lattice-based ZKP and concluded that approximating SVP and CVP to within 

n  (where n is the dimension of the lattice) is unlikely to be NP-hard.  Micciancio [5] 
showed that SVP is NP-hard to approximate within any constant less than 2 . 
 
ZKP can be extended to concurrent executions of the protocol with a single prover and 
multiple verifiers; this concept is studied in [6].  Micciancio et. al. [7] showed some 
results on concurrent ZKP.  An application of concurrent ZKP can be found in how a web 
server communicates with its clients.  In this example, the web server is the prover, and 
the clients are the verifiers.  Concurrent ZKP is designed to thwart the adversary who 
may control several clients and start sessions with the server in an attempt to extract 
information from the server.  
 
There are also several secure identification schemes that make use of the zero knowledge 
protocol.  The first was the Fiat-Shamir [20] scheme based on the problem of modular 
square roots extraction.  Extensions of this scheme have been proposed, as well as some 
based on factorization and on the discrete log problem.  These schemes have a high 
computational load due to arithmetic operations modulo large primes. 
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There are a number of schemes that have been proposed to facilitate secure identification 
on smart cards.  In 1989 Shamir proposed a scheme based on the NP-Complete Permuted 
Kernels Problem (PKP) [10].  In 1992 Baritaud et.al. [16] proposed a time-memory trade-
off algorithm which lead to a reduction in the computation time needed to solve PKP.  In 
2001 a new attack on PKP was found [17] based on an algorithm designed to count points 
on elliptic curves.  This algorithm was still exponential, but would theoretically solve the 
PKP for the original size proposed by Shamir on a single PC in 125 years.  
 
Other schemes suitable for use on smart cards have been developed [9,11,12,13,14].  In 
1989 Stern [14] proposed a scheme that relied on the intractability of some coding 
problems, which he later claimed was not practical.  In 1993 Stern proposed another 
scheme based on the NP-Complete problem of Syndrome Decoding [11] (SD), i.e., on the 
hardness of decoding a word of a given syndrome w.r.t. some binary linear error 
correcting code.  In 1994 Stern proposed a scheme based on the NP-Complete problem of 
Constrained Linear Equations (CLE) [12].  In 1994 Pointcheval proposed a scheme based 
on the NP-Complete Perceptron Problem (PP) [13, 19].  In 1997 Poupard [15] analyzed 
PKP and CLE to determine the theoretical limit to the efficiency of the known attacks, to 
determine the practical results they permit, and to get precise evaluation of which 
parameters should be chosen for a secure use of these protocols.  In 1999 Knudsen and 
Meier [18] found an attack on PP (and subsequently PPP).   In 2003 Pointcheval and 
Poupard developed a scheme based on the NP-Complete Permuted Perceptrons Problem 
(PPP) [8], addressing the attacks found to date.  PPP was implemented for smart cards 
and was able to achieve the minimal requirements of 2 KB of EEPROM, 100 Bytes of 
RAM, and 6.4 KB of communication.  
 
 
2.3  Specific ZKP Algorithms 
 
Below we discuss specific details of a few of the best known ZKP protocols.  The Graph 
Isomorphism protocol was chosen at the request of AFRL to complement work being 
simultaneously pursued by Professor Namaduri and his students at the University of 
North Texas.  We chose to complement this with a study of the discrete log and factoring 
protocols as they are the most highly studied and most rigorously reviewed problems in 
the community and form the basis of many cryptographic protocols, though the factoring 
algorithm presented here is an identification scheme which only offers weak anonymity if 
the public/private information is shared among users. 
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2.3.1 Graph Isomorphism Overview 
 
It is generally assumed that computing the graph isomorphism between two graphs is a 
difficult problem [33].  However, nothing is known about the graph isomorphism (GI) 
class, i.e. it is unknown if GI resides in P or NP.  Furthermore, there are many instances 
of graphs, such as planar graphs and trees, where it is known that the graph isomorphism 
problem can be solved efficiently in polynomial time [28].  These cases are common 
enough that the general form of the graph isomorphism problem is inappropriate as the 
basis for a zero-knowledge algorithm, since the average case analysis is poor.  Thus, the 
question arises, is there a subset of questions which we can identify and generate that are 
sufficiently difficult?   
 
One subset problem we explored is the graph isomorphic problem applied to regular 
graphs.  It is not known if there exists an efficient isomorphism algorithm.  In fact, it has 
been conjectured that many classes of graphs are easy to solve using heuristic based 
graph isomorphism analysis methods.  One class of problems that are considered difficult 
to solve using heuristic methods are regular graphs.  In fact, it has been hypothesized that 
regular graphs are the reason the graph isomorphism problem is not in P [31]. 
 
Under the assumption that graph isomorphism on regular graphs is a hard problem, then 
given two n-node graphs G and F, the prover(P) claims to know the mapping σ  between 
G and F.  V is the verifier. 
 
The protocol: 

1) P -> V: P generates an isomorphism F’ of F using the mapping τ  and sends F’ to 
V; 

2) V -> P: V sends a random bit b; 
3) P -> V: if b is 0, P sends V τ ; otherwise, P sends V σ τ ; 
4) V verifies that either τ  maps F to F’, or σ τ  maps G to F’. 
5)  

2.3.2  Factoring Overview 
 
Factoring is a problem that has been vigorously pursued in mathematics for hundreds of 
years, and while no proof exists experts agree it is extremely unlikely to be solved in 
polynomial time.  Thus, while there is no proof that it is in NP, it is often treated as such.  
In general, one can assume that having primes p and q large enough, then it is not 
possible to factor n = pq efficiently without prior knowledge of p and q [37].  The prover 
P chooses x < n as its private key, and publishes n along with its public key a  
where a ≡ x 2(modn) .   Note that in this case anonymity is not preserved.  In order to 
preserve anonymity all users must have the same public key. 
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The protocol: 
1) P -> V: P chooses r at random, and sends y ≡ r2(modn)  to V; 
2) V -> P: V sends a random bit b. 
3) P -> V: if b is 0, then P sends V z = r ; otherwise, P sends V z ≡ xr(modn); 
4) V verifies that yab − z2 ≡ 0(modn) .  

 
The Guillou-Quisquater Identification Scheme [42] is an algorithm that utilizes the 
hardness of factoring to ensure security of the protocol. 
 

2.3.3  Discrete Log Overview 
 
The discrete logarithm problem [21] is simple to state: suppose that α x ≡ β(modN), and 
that one wishes to compute the solution x, given α , β , and N.  As with factoring, it has 
not been formally proven to be in either P or NP, but the consensus among 
mathematicians is that it is extremely likely to be NP.  In general, with cryptographic 
protocols, and in particular with zero-knowledge proofs, the difficulty of the problem is 
used to form the basis of the security assumption, i.e., if one does not possess a solution, 
it is highly unlikely that one can make an intelligent guess by computing values 
associated with the solution in a dynamic fashion. 
 
In the protocol, the prover P has to show his knowledge of the discrete logarithm of 
α x ≡ β(modN) without revealing his solution. The values α , β , and N are published, 
and let N be a prime and ZN

* be the integers less than N. 
 
The protocol: 
 

1) P -> V: P selects r from ZN
*, and sendsγ ≡α r(modN) to V; 

2) V -> P: V sends a random bit b; 
3) P -> V: P sends y ≡ r + bx(modφ(N))  to V; 
4) V checks that α y ≡ γβ b (modN) . 

 
The Schnorr Identification Scheme [42] is a well-known application of the discrete log 
protocol.  Distributed Infinity has done work in the past on a more sophisticated 
application [39, 40, 41] of the discrete log protocol which facilitates strong anonymity 
through the addition of secret unique keys.  These unique keys only affect updating and 
revocation.  The general communication procedure is exactly as described here.  In order 
to gather the results shown in section 3.2.2, it should be noted that our implementation of 
the Discrete log ZKP had strong anonymity support removed.  This was to facilitate a 
head-to-head comparison of the three methods tested. 
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2.4  Direct Anonymous Attestation 
 
The Direct Anonymous Attestation (DAA) protocol was proposed by the Trusted 
Computing Group (TCG) for use in their Trusted Platform Module (TPM) specification.   
 
The DAA uses a discrete logarithm based ZKP as follows [34, 35]:  A TPM chooses 
secret message f, and obtains a signature on it from the issuer via a secure two-party 
protocol, and then the TPM can convince a verifier that it got an attestation anonymously 
by showing a proof of knowledge of an attestation.  This is done by computing N = gf, 
where g is the generator of an algebraic group.  The group is generally chosen such that 
computing the discrete logarithm is infeasible. 
 
The TCG proposed use of the DAA requires the TPM to interact with a Privacy 
Certification Authority (Privacy CA) during every transaction.  This bottleneck may 
prove to be too costly in the long run. 
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3. Algorithmic Requirements and Results 
 
The theoretical requirements for a functional Zero Knowledge Protocol are detailed 
below as well as results obtained from our implementations of a factoring based ZKP and 
a discrete log based ZKP.  In some cases the results are presented in term of 
mathematical analysis of the properties of the algorithm, such as for Graph Isomorphism.  
In other cases, such as with factoring and discrete log ZKPs we present performance 
metrics gathered by implementing specific ZKP algorithms. 
 
3.1 Graph Isomorphism Requirements and Results 
 

3.1.1  Requirements 
 

3.1.1.1 Key Generation Requirements 
 
Before the ZKP rounds begin, a candidate graph G is selected, on which the entire 
protocol relies.  Assuming that G is chosen at random from the entire space of graphs, 
and that edges of a graph can be encoded using O( c ) bits, then the O(n2)  bits of G and F 
are made public.  The private key σ  takes O( n ) to compute, and using σ , F takes O(n2) 
to generate. 
 
However, it is naïve to assume that any random graph G is as secure as others.  In 
particular, there are algorithms, such as Nauty[28], which can solve many graph 
isomorphism problems very efficiently; therefore it is vital to choose a graph G for which 
the isomorphism problem is hard to solve in polynomial time.  
 
There is experimental evidence that regular graphs are harder to solve for the current state 
of the art algorithms [24].  Briefly, a regular graph of r-regularity is an undirected graph 
in which every node is adjacent to r nodes.  The selection of G (and therefore, F) from an 
r-regular graph space as public keys would use O( rn ) bits as communications overhead. 
 
Furthermore, the choice of σ  is also vital to the security of the protocol.  Given a graph 
G, the graphs induced by Aut(G), or the automorphism group of G, have the same 
adjacency matrix structure as G.  In particular, when σ ∈ Aut(G) , then the adjacency 
matrix of F looks exactly the same as G, rendering the protocol extremely easy to cheat. 
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Thus the choice of σ  must be outside of Aut(G).  Let SG = |Aut(G)| denote the size of 
Aut(G).  The probability of choosing a non-automorphic σ  is exactly 1 – (SG/n!), and 
therefore, the expected number of picks until a non-automorphism is chosen is exactly 
n!/( n! – ( SG ) ).  Clearly the expected number of selections for σ  depends on SG; 
however the exact size of Aut(G) for regular graphs is a poorly understood area [30].  
Therefore we shall denote the computational overhead for selecting σ  by O( 1/SG ), since 
the time it takes to find a good σ  is clearly inversely proportional to SG. 

3.1.1.2 Protocol Initiation Requirements 
 
The same issues exist here as in the key generation.  Since F is an r-regular graph, then 
F’ must also be an r-regular graph.  Thus the communication overhead to send the 
verifier the edges of F’ takes O(rn) bits, and the computation overhead for selecting τ  
takes O(1/SF) where SF = |Aut(F)|. 
 

3.1.1.3 Answer Generation Requirements 
 
Regardless of the question asked by the verifier, the prover sends one permutation to the 
verifier, which takes O(n) bits of overhead.  If the verifier asks to see the mapping 
between G and F’, then the prover has to compute σ τ , which takes O(n) time. 
 

3.1.1.4 Verification Requirements 
 
The verifier takes the permutation sent by the prover and applies it to either G or F, 
which takes O(n2) time to reshuffle the adjacency matrices. 
 

3.1.1.5 Overall Performance Requirements 
 
When regular graphs are used for the protocol, the total communications overhead is 
O(rn) bits, and the computation overhead is O(n2)+O(1/SG)+O(1/SF). Clearly, the 
scalability of the graph isomorphism protocol relies on r, SG, and SF. 
 



13 
 

3.1.2  Theoretical Results 
 
According to the GI protocol, the mapping σ stays fixed but a new mapping τ is 
generated at every iteration.  It is meaningless to discuss the security of the protocol when 
σ ∈ Aut(G), since the prover’s secret is out in the open when that is the case.  Therefore 
in the ensuing discussion we shall assume that σ ∉ Aut(G).  In the following analysis, we 
assume an honest prover P, an honest verifier V, and an eavesdropper E who listens to the 
exchanges in the protocol. 
 
1-round analysis:  
At step 1 of the protocol, the prover chooses τ at random to generate F’.  The probability 
that τ ∈ Aut(F) is SF/n!, and we denote the probability by Pr[τ ∈ Aut(F) ].  At step 2 & 3 
of the protocol, the prover sends either the mapping τ or σ τ to the verifier, depending on 
the verifier’s coin flip, which is random and independent of all other events in the 
protocol.  Therefore, an eavesdropper is successful at uncovering σ only when τ ∈ Aut(F) 
and the coin flip is 1;  in the language of probability and events, the Eavesdropper is 
successful when the conjunction of two events occurs, i.e., when τ ∈ Aut(F) and 
CoinFlip=1.  The two events are independent because coin tosses are independent of 
everything else in the protocol, therefore the probability of this conjunction is given by 
 
Pr[ CoinFlip=1 ∩ τ ∈ Aut(F) ] = Pr[ CoinFlip=1 ] ⋅ Pr[τ ∈ Aut(F) ] = (1/2)( SF/n! ). 
 
This analysis assumes that the eavesdropper can gain no advantage in guessing based on 
an analysis of previous exchanges.  There is currently no theoretical basis for this 
assumption, which puts the validity of using GI based zero knowledge protocols into 
question.  
 
K-round Analysis:  
We wish to find the probability that the eavesdropper successfully uncovers σ at the kth 
round.  Clearly, that means the eavesdropper has failed at the first k-1 rounds, so 
 
Pr[ eavesdropper uncovers σ at exactly the kth round ]  

= ( 
i=1

k−1

∏ Pr[ eavesdropper fails at round i ] ) ⋅ Pr[ eavesdropper successful at round k ]. 

= ( 1 - (1/2)( SF/n! ) )k-1 ⋅ (1/2)( SF /n! ). 
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Distribution of Eavesdropper’s successes: 
Taking the results from the k-round analysis, we can then calculate the probability that 
the Eavesdropper has to try more than k-rounds before he succeeds: 
 
Pr[ eavesdropper uncovers σ after the kth round ]  

= 1 - 
i=1

k

∑ Pr[ eavesdropper uncovers σ at exactly the ith round ], 

however, the quantity  (
i=1

k

∑ Pr[ eavesdropper uncovers σ at exactly the ith round ] ) is 

clearly a geometric series, therefore a finite sum exists.  After applying the geometric 
sum and some simple algebraic manipulations, we arrive at 
 
Pr[ eavesdropper uncovers σ after the kth round ] = 1 - ( 1 - (1/2)( SF /n! ) )k. 
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Figure 2:  Probability Distribution for uncovering secret permutation after k rounds. 
 
It is clear from this graph that the smaller the value of SF = |Aut(F)|,  the longer it takes 
for an eavesdropper to uncover the secret permutation σ.  Therefore it can be argued that 
smaller values of SF leads to a more secure GI protocol. 
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3.1.3 Application of the Protocol based on regular graphs. 
 
The analysis regarding the complexity of generating graphs from the previous sections 
assumes that generating an appropriate graph is as easy as selecting a random graph from 
the space of all graphs.  As is seen from the analysis, graphs whose automorphism groups 
are smaller tend to have better security in the protocol.  Random regular graphs are not 
trivial to generate, however, and have been the subject of interest in the community [25, 
27].  In addition, regular graphs seem to be one of the more difficult instances of graphs 
for graph isomorphism [31].  In this section, we examine the security of regular graphs 
using the technique we developed in the previous sections. 
 
Definition: a graph G is regular if all vertices v in G have the same number of edges.  G 
is r-regular if all vertices v in G have exactly r edges. 
 
Bollobás [30] gave a bound on the size of automorphism groups for a regular graph G.  
Specifically, let θ be any permutation on the vertices of an n-node r-regular graph G; then 
the probability that G is invariant under θ is bounded by 
 

Pr(θ ∈ Aut(G) ) ≤ (6rs)12n-s(1+ε)ttuu,   (1) 
 
where s is the number of vertices moved by θ, t is the number of 2-cycles in θ, and u is 
the number of 3-cycles in θ.  Thus, by trivial extension, the size of the automorphism 
group Aut(G) is bounded by 
 

|Aut(G)| ≤ (n!) ⋅ ((6rs)12n-s(1+ε)ttuu ).   (2) 
 
This bound may look formidable, but we can still draw some preliminary conclusions 
from it.  Specifically, as the regularity of G grows, the bound suggests that the size of the 
automorphism group of G grows as well. 
 
Krasikov et al. [29] considered connected regular graphs, and gave a bound that shows 
the structure of automorphism groups of G with respect to regularity: 
 

|Aut(G)| ≤ n(r!)(r-1)n-r-1,  (3) 
 
where r is the regularity of G.  When n-r ≈ 0, |Aut(G)| is bounded approximately by n!, 
and when r is small, then |Aut(G)| is still bounded by n(r!)(r-1)n-r-1; in other words, when 
the regularity of G is close to the number of nodes of G, there exist very few distinct 
automorphism groups; when regularity is small compared to the number of nodes, then 
there exist more distinct automorphism groups. 
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Our conclusion based on this is that good graph selection entails the generation of a 
regular graph with a small automorphism group.  This task does not seem at all trivial to 
us, but is deemed critical for successful development of this problem type into a 
successful zero knowledge protocol. 
 
 
Application of Regular Graphs to k-round GI Protocol: 
One often employs the use of confidence level, c, to measure the robustness of protocols.  
Taking into account the results we derived in the previous sections, a useful metric to 
measure the strength of the GI protocol is 
 
max

k
 Pr[ eavesdropper uncovers σ after (k+1)th round ] ≥ 1 - c; 

 
that is, we wish to maximize the value of k such that the probability that the eavesdropper 
succeeds in uncovering σ with 1-c probability happens just after k rounds.  When 
c=99.99%, this means that we want to find the maximal value of k such that for all j>k, 
the probability that the eavesdropper finds σ  at the jth round is more than 0.01%. 
 
Assuming the regular graph F is connected, then we have the follow results: 
 
Case 1: when regularity is large, n-r ≈ 0: 
 
Pr[ eavesdropper uncovers σ after the kth round ]  
= 1 - ( 1 - (1/2)( SF/n! ) )k 
≤ 1 - ( 1 - (1/2)( n(r!)(r-1)n-r-1/n! ) )k 
≈ 1 - ( 1 - (1/2)( n!/n! ) )k 
= 1 - ( ½ )k 
 
We see that the chance of an eavesdropper succeeding after just one round becomes very 
high (50%); more over, at this point the chance of an eavesdropper succeeding reduces to 
a series of coinflips.  Furthermore, for the protocol to be secure within some confidence 
percentage c, we need to estimate the value of k such that Pr[ eavesdropper uncovers σ 
after the kth round ] ≥ 1 - c.  For the case of 99.99% confidence, we maximize the value 
of k for  
 

1 - (1/2)k ≥ 1/10000,  (4) 
 
and find that k ≤ 0.00014.  In other words, as soon as the protocol starts, it becomes 
impossible to maintain the 99.99% confidence threshold; by experimenting with small 
values of k we can see that the probability of an eavesdropper’s success increases 
dramatically as the number of rounds increases: 
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Pr[ eavesdropper uncovers σ after the first round ] ≤ 0.5, 
Pr[ eavesdropper uncovers σ after the second round ] ≤ 0.75, 
Pr[ eavesdropper uncovers σ after the third round ] ≤ 0.875. 
 
Case 2: when regularity r is small compared to n: 
 
Pr[ eavesdropper uncovers σ after the kth round ]  
= 1 - ( 1 - (1/2)( SF /n! ) )k 
≤ 1 - ( 1 - (1/2)( n(r!)(r-1)n-r-1/n! ) )k 
 
in this case, the chance of an eavesdropper succeeding after k rounds depends on the 
number of nodes in F and its regularity.  
 
Again, we calculate the value of k for which the protocol achieves some level of 
confidence; let c = 99.99%, then we want to maximize the value of k such that 
 

1 - ( 1 - (1/2)( n(r!)(r-1)n-r-1/n! ) )k ≥ 1/10000   (5) 
 
letting  c = 99.99%, we are able to create a bound on k,  
 

k ≤ log( 9999/10000 ) / log( 1 - (½)( n(r!)(r-1)n-r-1/n! ) );   (6) 
 
 
using Stirling’s Approximation for factorials, and choosing small values of r such that r ≥ 
3, we generate the following graph 
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Figure 3:  Maximum number of rounds to maintain 99.99% confidence 
 

 
Even for a small value of n, the bound on k is quite good.  In particular, for a graph with 
14 nodes and regularity of 3, the number of rounds needed before an eavesdropper 
succeeds with more than 0.01% chance is 207.  Furthermore, the graph illustrates that in 
general, as long as the value of r is limited to less than n , then the value of k will also 
be large enough for use in the GI protocol. 
 
When interpreting these results, keep in mind the inversion problem.  If the graph can be 
inverted and solved more easily, then the confidence should be based on the difficulty in 
solving for the inverted graph, not the original.  This problem is nullified by choosing r to 
be n/2. 
 

3.1.4 Difficulty in generating good random regular graphs. 
 
In the above analysis, we showed that when a connected graph is of small regularity, then 
its security characteristics are quite good.  The characteristics of small-regularity graphs 
seem to be well understood [25, 27].  There also exist algorithms that generate random 
regular graphs under some constraints in non-exponential time [25, 26, 36].  However, 
we have not seen any universal random regular graph generation algorithm that meets all 
of our restrictions. 
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Further complicating the issue for generating good random regular graphs is the existence 
of efficient isomorphism finding programs, such as Nauty [28].  Nauty leverages any 
non-trivial automorphisms.  It has been shown that Nauty is able to find isomorphisms 
for most graphs with less than 100 vertices in less than one second.  For the graph 
isomorphism protocol to be secure, it is then necessary to generate random regular graphs 
with a large number of vertices while pruning the candidate graphs with large 
automorphism groups.  This is a time consuming task, given that the known algorithms 
for generating random regular graphs spend most of their time in generating and 
eliminating unqualified graphs.  Although the theoretical results show that some classes 
of graphs such as regular graphs may be good candidates for the GI protocol, there 
remains the obstacle that the current state of the art algorithms for random graph 
generation isn’t efficient enough to warrant the use of GI as a basis for ZKP.   
 
3.2 Factoring Requirements and Results 
 
The implementation we chose was generic, not aimed for maximal performance.  An 
identification scheme such as Guillou-Quisquater would be more efficient given that our 
implementation only ensures weak anonymity.  Our goal was to show how the GI 
approach compared against other generic approaches, and more optimized approaches 
such as Guillou-Quisquater would have been an unfair comparison given the early state 
of the GI approach.   
 

3.2.1  Requirements 
 

3.2.1.1 Key Generation Requirements 
  
The public keys are n and a.  In general, large primes p and q are chosen so that n is 
difficult to factor using current methods [32]. We assume an n of at least 1024 bits.  Since 
a ≡ x 2(modn) , a also takes up at least 1024 bits.  Thus, at least 2048 bits, or 256 bytes, 
of information must be made public before the rounds of zero knowledge proofs begin. 
As for private key storage, since x < n, then we assume x to take up at most 1024 bits. 
 
Since there are a constant number of multiplications, the computation overhead is O( c ). 
 

3.2.1.2 Protocol Initiation Requirements 
 
The values of r and y are 1024 bits, since they are both taken modulo n.  Computing r2 is 
an O( c ) operation. 
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3.2.1.3 Answer Generation Requirements 
 
In the third step, z = r  or z ≡ xr(modn)  is sent to V, so at most 1024 bits are sent over the 
communication lines.  
 

3.2.1.4 Verification Requirements 
 
No explicit storage is required at this step, and the computational overhead for answer 
verification is constant. 
 

3.2.1.5 Performance Complexity 
 
The security of this protocol relies on the primes chosen.  That is, assuming 1024 bits is 
“safe enough” for today, then a total of 1024*4 + ε bits are sent over the communication 
lines over one round of zero-knowledge proof.  Clearly, if a bigger prime is picked, say, 
of size B-bits, then the communications overhead will scale linearly, and over k rounds, is 
k( 4B + ε ), or O( B ). 
 
The computational overhead is O( c ). 

3.2.2  Results 
 
The curve here looks polynomial, as opposed to the O( c ) predicted from the theoretical 
analysis of the protocol.  This may be attributed by the computational overhead incurred 
by the physical limitation of the operational system.  But note that even at 8192-bits the 
entire protocol completes in 7 milliseconds. 
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Figure 4:  Factoring Protocol Simulation 
 

 
Results related to security are presented in section 3.4 and compared with the other two 
techniques. 
 
3.3 Discrete Logarithm Requirements and Results 
 
As with factoring the implementation we chose was generic, not aimed for maximal 
performance.  An identification scheme such as Schnorr would be more efficient given 
that our implementation only ensures weak anonymity.  The goal was to show how the GI 
approach compared against other generic approaches, and more optimized approaches 
such as Schnorr would have been an unfair comparison given the early state of the GI 
approach.   
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3.3.1  Requirements 

3.3.1.1 Key generation Requirements 
 
The values α , β , and N are generated; N is normally chosen to be a large prime, typically 
1024 bits and above.  Thus the prover will publish 3*1024 bits of information. 
 
For the private key, x has at least φ(N)  possible values, where φ(N)  is the number of 
values less than N that are relatively prime to N.  When N is prime, φ(N) = N −1, so we 
can assume that x is about 1024 bits also. 
 

3.3.1.2 Protocol Initiation Requirements 
 
P selects r randomly from ZN

*, so r is represented by 1024 bits.  Note that ZN
* are the 

non-zero integers less than N. γ  is also represented by 1024 bits, since it is taken modulo 
N.  So 1024 bits is the communications overhead. 
 
The exponentiation of α r  takes O( log r ) steps. 
 

3.3.1.3 Answer Generation Requirements 
 
Since y is taken moduloφ(N) , it is represented by 1024 bits. 
 

3.3.1.4 Verification Requirements 
 
The exponentiation α y takes O( log y ) steps. 
 

3.3.1.5 Performance Complexity 
 
Like the Factorization Protocol, the communications overhead of the Discrete Logarithm 
protocol depends on the size of the prime.  In the case of a 1024-bit prime, the total 
communication overhead incurred by the protocol is (5*1024 + ε) bits.  Over k rounds, 
and for B-bit primes, the total communications overhead is k( 5B + ε ) bits, or O( B ). 
 
The total computation overhead in this protocol is O( log r + log y ) = O( log ry ). 
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3.3.2 Results 
 
The graph shows an exponential growth in the running time, contrary to the expected 
logarithmic behavior from the theoretical analysis of the protocol.  However, upon closer 
inspection, we do indeed see a logarithmic behavior up to about 2048 bits.  This 
exponential growth after 2048-bits may be contributed by the fact that there isn’t enough 
physical memory available for exponentiation of 2048-plus-bit numbers to a 2048-plus-
bit number, even though in theory exponentiation takes logarithmic steps.  In other 
words, the exponentiation procedure spends most of the time swapping memory in and 
out of the hard disk, resulting in the exponential curve that is shown in the graph.  It is 
also worth noting that even with the exponential-like curve, the actual run time is still 
quite manageable; from the graph we see that at 4096-bits it still takes less than half a 
second to complete the entire protocol. 
 
 
 
 

 
 

Figure 5:  Discrete Logarithm Protocol Simulation 
 
Results related to security are presented in section 3.4 and compared with the other two 
techniques. 
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3.4 Discussion 
 
In the previous sections, we investigated the properties of three different applications of 
Zero-Knowledge Protocol: Graph Isomorphism, Factoring, and Discrete Logarithm.  The 
performance complexities of the protocols are summarized in Table 1.  We find that over 
k rounds, the Graph Isomorphism protocol has a smaller communication overhead (since 
relatively small graphs may be used) than Factoring and Discrete Logarithm.  The GI 
may take significantly longer to generate good candidate graphs before the protocol can 
begin, however, because the efficient generation of random graphs with particular 
characteristics (such as regularity) is still an open research area [38].  On the other hand, 
generating large primes is a relatively fast process that takes polynomial time to complete 
[37]. 
 
 

Table 1:  Summary of Performance Complexities 
 

 Factoring 
Protocol 

Discrete Logarithm 
Protocol 

GI Protocol 

Variable 
Definitions 

B: size of 
modulus, in 
bits 
 
c: constant 

B: size of prime, in bits 
 
r: size of integer, in bits 
 
y: size of integer, in bits 

r: regularity of graph 
 
n: number of nodes in 
graph 
 
SG: |Aut(G)| 
 
SF: |Aut(F)| 

Communication 
Overhead 

O( B ) O( B ) O( rn ) 

Computation 
Overhead 

O( c ) O( log ry ) O(n2)+O(1/SG)+O(1/SF)

 
 
 
The computation overhead for Factoring and Discrete Logarithm protocols also fare 
better than GI.  From our analyses, we see that the Factoring and Discrete Logarithm 
protocols require constant and logarithmic overhead, respectively, while GI requires at 
least polynomial computation overhead.  Thus, given limited computing resources, the 
Factoring and Discrete Logarithm protocols scale far better than GI in terms of 
performance, and are better choices for the implementation of ZKP. 
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We also investigated the security properties of these protocols; the results are 
summarized in Table 2.  The security properties of Factoring and Discrete Logarithm 
protocols are stronger than that of the GI protocol.  Specifically, at the 99.99% 
confidence level, we see that the security of the GI protocol depends on the 
automorphism group of the candidate graph; when a “good” candidate graph is given, i.e. 
a graph with a small automorphism group, the GI protocol may be able to withstand the 
presence of an eavesdropper.  However, given a “bad” candidate graph, the GI graph may 
fail to meet the 99.99% confidence threshold from the get-go.  We also studied the 
application of regular graphs in ZKP, and found that the GI protocol is more secure when 
the graph has lower regularity.  For example, when a regular graph of 14 nodes and 
regularity of 3 is used, the protocol is able to tolerate the presence of an eavesdropper for 
about 207 rounds. 
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Table 2:  Summary of Security Analysis. 
 
 Factoring Protocol Discrete Logarithm 

Protocol 
GI Protocol 

Variable Definitions N: 128-bit integer 
 
φ(N) : Euler Phi 
function 

N: 128-bit prime 
 
φ(N) : Euler Phi 
function 

F: random graph 
with 2128 nodes 
 
SF: automorphism 
group of F, and we 
assume a relatively 
small automorphism 
group size, such that 
SF /n! ≈ 10-10 
 
 

1-Round Security 1/φ(N) 1/φ(N) (1/2)( SF/n! ) 
k-Round Security k /φ(N)  k /φ(N) ( 1 - (1/2)( SF/n! ) )k-

1 ⋅ (1/2)( SF /n!) 
Max Number of 
Rounds Required to 
Maintain 99.99% 
Confidence Level  

1035 1035 2∗107  

 
On the other hand, the security of Factoring and Discrete Logarithm protocols rely 
entirely on the size of φ(N) , where N is the composite in the Factoring protocol and the 
prime in the Discrete Logarithm protocol.  For either protocol, for example, if N is 1024 
bits, then φ(N)  must also be roughly 1024 bits.  Furthermore, since the protocols do not 
reveal extra information after the primes are chosen, an eavesdropper must resort to brute 
force guessing of the prover’s secret.  The probability for the eavesdropper’s success at 
one round is 1/φ(N), an astonishingly low probability even when φ(N)  is roughly 128-
bits.  If the eavesdropper attempts to exhaustively search through all possible numbers by 
guessing one number each round, then at the 99.99% protocol confidence, the number of 
rounds k required for the eavesdropper to succeed with more than 0.01% probability must 
satisfy 
 

k /φ(N) ≥ 0.0001.     (7) 
 

When φ(N)  is 128-bits, k is roughly 1035; the eavesdropper will not have any luck by 
guessing the prover’s secret from the Factoring and the Discrete Logarithm protocols.  
This is significant because the prover typically exchanges zero-knowledge proofs with 
the verifier over a number of rounds, e.g. 20, that is much smaller than 1035.  Thus, for 
most ZKP exchanges, the Factoring and Discrete Logarithm protocols maintain the 
99.99% confidence threshold. 
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In the general protocol, the probability that a malicious user successfully poses as a 
legitimate user is (1/2)k, where k is again the number of rounds.  We are interested in how 
many rounds it takes for the generic ZKP so that a cheater has less than 0.01% chance of 
passing all k rounds.  This is found by solving for k in  
 

(1/2)k ≤ 0.0001,    (8) 
 
and that that k ≈ 13.28.  Therefore it takes at least 14 rounds for a cheater to have less 
than 0.01% chance of succeeding.  Given this information, we calculate the number of 
bits exchanged for each protocol in 14 rounds: 
 

Table 3:  Number of bits exchanged. 
 
 Factoring Protocol 

(128-bit prime used) 
Discrete Logarithm 
Protocol 
(128-bit composite 
used) 

GI Protocol 
(Graph with 128-bit 
nodes used) 

Number of Bits 
exchanged in 14 
rounds 

14*4*128=7168 bits 14*5*128*14=8960 
bits 

Regular graph with 
r=n/2 edges = 64 
bits  
 
64*128 = 8192 bits 

 
As we can see, when a sparse graph is used in the GI protocol, the bits exchanged is 
competitive with the other two protocols. 
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4. Discussion and Future Work 
 
In this paper we touched on the issues of identification and anonymity in zkp protocols. 
In an identification scheme, each person carries a secret key S that is known only to that 
person; associated with each S is a public key P that is derived from S using a 
cryptographically-strong function, and the user authenticates himself to a server who 
holds the corresponding public key P.  In a ZKP scheme, each user proves his identity to 
the server by answering questions about his secret key; the server verifies the answers by 
computing values based on P and other publicly available information.  Note that in the 
ZKP scheme, the secret key S is never transmitted or revealed to the verifier.  However, 
upon successful authentication of the user, 1 bit of information is revealed, namely, that 
particular person is a legitimate user to the system.  While the protocol itself may not 
reveal additional information about the secret key (thus preventing any impersonation 
attacks), the identification of the user may lead to other actions by the eavesdroppers, 
such as physically following the user, which may endanger the success of missions. 
 
An authentication scheme that maintains anonymity is desired over identification 
schemes.  Two types of anonymity exist: weak anonymity and strong anonymity.  Weak 
anonymity is essentially defined as hiding in masses.  That is, assuming all legitimate 
users are given the same usernames and passwords it would be hard for the server and the 
observers to identify any particular user in that group.  Thus, any legitimate user remains 
anonymous among its peer group of legitimate users.  It is obvious that this protocol 
becomes harder to maintain its security as the user base expands.  For example, if an 
individual’s username and password are compromised, then the entire system is 
compromised.  In this case, since the compromised user can’t be revoked, there is no way 
to recover from this catastrophe.  Therefore, any protocol with weak anonymity is clearly 
not scalable from a security maintainability perspective. 
 
An authentication scheme guarantees strong anonymity when each user in the system is 
given a unique identification, yet is indistinguishable to an observer and the server.  Very 
few ZKP algorithms currently in use support this, which partially explains why they are 
not in more wide-spread use.  An interesting example of a protocol that has strong 
anonymity is described in [39]. The algorithm presented in this paper, however, is fairly 
inefficient compared to aggressively optimized identification schemes that are more 
commonly used in today’s architectures. A good area of future work would be to explore 
methods for supporting characteristics such as strong anonymity and revocation, while 
still maintaining the efficient bandwidth characteristics of advanced identification 
protocols.  
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5.  Conclusions 
 
In this report, we investigated the use of the Zero Knowledge Protocol (ZKP) to 
authenticate and secure communication in a manner compatible with the requirements of 
an airborne network.  We examined Factoring, Discrete Logarithm, and Graph 
Isomorphism protocols in detail.  Theoretical analyses were conducted to study the 
applicability of these protocols; additionally, the simulations of the Factoring and 
Discrete Logarithm protocols were run to study the scalability performance of these 
protocols.  We found that while the simulation results of Factoring and Discrete 
Logarithms did not match the theoretical results due to limitations of computing 
hardware, the protocols still finished in the ranges of milliseconds with the use of 
thousand-bit primes.  Our conclusion based on these preliminary results is even without 
an optimized implementation Factoring and Discrete Logarithms protocols appear quite 
promising for application in the airborne networking domain.  
 
We also derived theoretical results for the Graph Isomorphism protocol.  Our analysis 
indicates that random graph selection is insufficient, but that a regular connected graph 
with a small automorphism group may hold the properties necessary to provide the 
desirable security properties.  There are several drawbacks to this approach, however.  
First, generation of graphs with these properties is non-trivial.  The current state of the art 
algorithms for regular graph generation is limited, and runs in polynomial time only for 
certain classes of regular graphs.  To further complicate the problem, there are fast 
isomorphism detection programs such as Nauty that force the GI protocol to use regular 
graphs with large numbers of nodes for better protocol security.  The efficient generation 
of regular graphs with large number of nodes and moderate regularity poses a significant 
challenge in and of itself.  Therefore the GI protocol may not be feasible for real-world 
deployment due to the algorithmic challenges in generation of good candidate graphs. 
 
A second drawback is that there is no evidence that the question-answer exchange cannot 
be captured, analyzed, and used to significantly improve the guessing process of a 
malicious user.  This property is well established in the literature for Factoring and 
Discrete Logarithms, but until it can be shown for Graph Isomorphism we would be 
extremely hesitant to base a security protocol around it. 
 
The Factoring and Discrete Logarithm protocols perform exceptionally well in terms of 
security and overhead requirements.  These protocols are efficient in their computation 
overhead; the Discrete Logarithm protocol requires just a logarithm increase in 
computing overhead as the size of the prime increases; the Factoring protocol is even 
more efficient in that a constant amount of overhead is used no matter what size prime is 
used. 
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Our overall conclusion is that there is some indication that it may be possible that Graph 
Isomorphism could be made into an efficient algorithm.  The number of bits sent per 
degree of security granted shows promise.  There is quite a bit of work that would be 
necessary, however, to make this approach viable.  First, new techniques in graph 
generation must be developed.  Second, challenge-response exchanges must be developed 
that can be proven to be resistant to analysis of previously captured exchanges.  If these 
feats are both accomplished (a non-trivial accomplishment) then a Graph Isomorphism 
based zero knowledge protocol may be competitive with, but not clearly superior to, 
more established techniques such as Factoring or Discrete Logarithm protocols.  Even 
then, we believe there is more risk of future scientists discovering new heuristic 
mechanisms to compromise security characteristics than in the more established ZKP 
algorithms.  This conclusion is based on the fact that Factoring and Discrete Logarithm 
problems have been heavily scrutinized by large numbers of scientists for hundreds of 
years and thus the difficulty of discovering heuristics that improve average case analysis 
is better established than the subset of Graph Isomorphic graphs we are considering. 
 
Based on these findings, we consider Factoring and Discrete logarithm based zero-
knowledge protocols to be the most promising of the algorithms investigated for potential 
application to airborne networking security protocols.  We have implemented versions of 
both of these algorithms, and our preliminary results regarding speed and overhead 
reinforce these conclusions.  We believe future work into the area expanding these 
approaches to efficiently support strong anonymity would be a valuable next step. 
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7.  List of Symbols, Abbreviations, and Acronyms 
 
CA:  Certificate Authority 
CLE:  Constained Linear Equations 
CVP:  Closest Vector Problem 
DAA:  Direct Anonymous Attestation 
FAAN:  First Time Authentication for Airborne Networks 
GI:  Graph Isomorphism 
ID:  Identification 
MANET:  Mobile Adhoc Network 
φ(N) : Euler Phi function 
PKP:  Permuted Kernels Problem 
PP:  Perceptron Problem 
PPP:  Permuted Perceptron Problem 
SD:  Syndrome Decoding 
SVP:  Shortest Vector Problem 
TCG:  Trusted Computing Group 
TPM:  Trusted Platform Module 
ZKP:  Zero Knowledge Protocol 
ZN

*:  non-zero integers modulo N 
 




